
CS4677 Computer Forensics
Forensics Duplication

Chris Eagle
Spring '06

References

• Text chapter 6-8
• Disk Imaging Specification 3.1.6

– http://www.cftt.nist.gov/DI-spec-3-1-6.doc
• Computer Forensics Tool Testing Project

– http://www.cftt.nist.gov/

Evidence Collection

• Duplicates are admissible as evidence
• Whether a system is off when we arrive or

we shut it down after collecting any volatile
evidence we need to properly image its
hard drive

Types of Duplicates

• Forensic Duplicate
– A file containing every bit of the source
– No extra data
– dd produces forensics duplicates

• Qualified Duplicate
– May contain additional embedded information such as

hash values
– May compress empty sectors
– SafeBack and EnCase produce these

Types of Duplicates (II)

• Restored Image
– Restoration of a forensic or qualified image to

another hard drive
• Example: trying to create a bootable hard drive

from a dd file
– Tougher than it sounds

• Works best if new hard drive is identical to original
hard drive

Mirror Image

• Basically clones the original hard drive
onto a new hard drive
– Generally performed using a hardware drive

duplicator
– For best results new hard drive should be

identical to original
– Must make sure every bit is actually copied

• There is a difference between cheap cloning
hardware and forensically sound cloning hardware

Personal Preference

• Use dd/dcfldd to make an image of the
hard drive

• Save the dd output as a file on a clean
hard drive sufficiently large to hold the
image

• No need to worry about matching original
hardware

• Easier to make additional copies

Imaging Options

• Remove evidence drive from victim
system
– Make drive read only

• Set read only jumper on drive if it has one
• Use hardware "write blocker"

– Install drive in imaging system
• Preferably Linux as Windows will automount the

drive
– Image drive using dd onto media with

sufficient free space

Imaging Options (II)

• Remove evidence drive from victim
system
– Use a hardware drive duplicator to mirror the

drive
• Use hardware that computes md5 or better yet

SHA1 or SHA256 sums for you
• WARNING – cheap drive duplicators are built for

speed, not for forensics purposes and often
attempt to copy only allocated portions of a disk.

– Attempt to mirror onto identical media

Imaging Options (III)

• Use a bootable CD to boot victim system
– Less desirable because mistakes could alter

hard drive
– Use dd on bootable CD to duplicate evidence

drive to removable media (USB drive) or
across a network (netcat)

Imaging Options (IV)

• Image while system is running
– Last resort
– Perform only if system is running when you

arrive and you can’t shut it down
– Use statically linked dd to image to removable

media or across a network
– Partition images may appear to have been

"uncleanly mounted" when you go to analyze
them

Evidence Integrity

• In all cases obtain both MD5 and SHA1, or
better yet SHA256 hashes of your
evidence as soon as possible

• Always best to compute at the same time
the copy is being made
– dcfldd can do this
– Use tee to do this when using dd
– Most hardware oriented forensics duplicators

will generate at least one of these
– Encase generates inline hashes

Wiping A Hard Drive

• Should you wish to delete old data (like an
old case) from a hard drive
– Install the drive in a Linux system
– Use dd to overwrite the old data

dd if=/dev/zero of=/dev/hdb

– Some people talk of multiple overwrites or
random data followed by all ones or all zeros

• This is more for non-recoverability

dd Review

• Copies standard input to standard output
by default

• Many command line arguments
• Three predominant versions

– GNU dd
– dcfldd

• Defense Computer Forensics Lab dd
– George Garner dd.exe for Windows

dd Summary

Yes

*nix only

*nix only

Image
Drives

MD5
only

YesYesWindows
only

dd.exe

Yes*nix onlyYes
/dev/mem

*nix,
cygwin

dcfldd

No*nix onlyYes
/dev/mem

*nix,
cygwin

dd

Compute
Hash

Image
Partitions

Image
Ram

O/S

dd Options

• if – input file
– Can specify a file or a device name
– Memory device

• dd, dcfldd
if=/dev/mem

• dd.exe
if=\\.\PhysicalMemory

dd Options (if)

• if – input file (cont)
– Partition

• A partition is a contiguous groups of sectors upon which a file
system is created

• *nix
if=/dev/hdaX, if=/dev/hdbX
if=/dev/sdaX

• Windows (dd.exe only)
if=\\.\C:
if=\\?\Volume{690d4e02-00ae-11d8-aab0-806d6172696f}

^^^ "Volume Name:" from volume_dump
» Long name allows imaging of non-Windows partitions

dd Options (if)

• if – input file (cont)
– Drive

• A drive may contain many partitions as well as
sectors that reside outside of any partition such as
a boot sector and the partition table

• *nix
if=/dev/hda, if=/dev/hdb, …
if=/dev/sda

• Windows (dd.exe only)
if=\\.\PhysicalDriveX

dd Options (of)

• of – output file
– Usually specifies the destination file name
– If omitted, output sent to stdout (which can be

piped somewhere)
– Will be same size as input file/device so make

sure you have room

dd Options (bs)

• bs – block size
– Basic size of an input chunk
– Unit size to which the count argument applies
– Default varies

• dd, dcfldd – 512 bytes
• dd.exe – 4096 bytes

– For disk files/devices most efficient if bs ==
sector size or file system block size

dd Options (count)

• count – number of blocks to copy
– NOT the number of bytes to copy (unless

bs=1)
– Total number of bytes will be lesser of

• Input size
• count * bs

– Last block is not necessarily complete

dd Options (skip)

• skip – number of blocks to skip before
beginning the copy operation
– Useful when you do not wish to start at the

beginning of a file/device
– Examples

• Pulling a specific file out of the middle of a disk
image

• Pulling a specific partition out of the middle of an
image file

dd Options (seek)

• seek – the number of blocks to skip on the
output device before writing begins

• Not generally used when creating
forensics image files

dd Options (conv)
• conv – type of conversion to perform on input

– Careful here, for forensics purposes, you generally do
not want to alter the input data in any way

– Could do ASCII to EBCDIC or upper to lower case
among others

noerror
• Keep reading even if an error occurs
• Drops the current input block and proceeds to the next

sync
• Pad the failed input block with zeros
• This preserves size

conv=noerror,sync

dd Options (hashing)

• dcfldd
hash=NAME (either md5, sha1, sha256,
sha384 or sha512)

hashwindow=X
• Generates a hash after each X bytes as well as an overall

hash
• Set X to 0 to get only the overall hash

• dd.exe – MD5 only, across entire input set
--md5sum

CS4677 Computer Forensics
Evidence Handling

Chris Eagle
Spring '06

Evidence

• Anything that helps prove or disprove a
point
– Documents
– Electronic media or files
– Printouts
– etc…

Original Evidence

• Original media associated with a
computer/crime under investigation

• The first copy of perishable data
– Volatile data from a live system
– The output from network monitoring software

Best Evidence
• It is not always possible to confiscate all

original evidence
• Federal Rules of Evidence (FRE) allow

admission of duplicates
– Rule 1001(3)

• …An "original" of a photograph includes the negative or
any print therefrom. If data are stored in a computer or
similar device, any printout or other output readable by
sight, shown to reflect the data accurately, is an
"original".

– Rule 1003. Admissibility of Duplicates
• A duplicate is admissible to the same extent as an

original unless (1) a genuine question is raised as to the
authenticity of the original or (2) in the circumstances it
would be unfair to admit the duplicate in lieu of the
original.

Best Evidence (ii)

• Either
– The original data if available
– The original duplicate

• In either case chain of custody begins
here

• A working duplicate of a piece of best
evidence is NOT subject to chain of
custody
– It may be subject to validation

Working Copies

• Never perform examinations on best evidence
• Always create working copies
• Easiest if this can be done as the evidence is

collected
– Turn best evidence in to custodian
– Keep working copy for examination

• Copies of copies are fine (and easier) as long as
hashes match

Authentication

• The original collector of the evidence
testifies
– How the item was collected
– That chain of custody was followed in its

collection
• People that collect evidence may be called

to testify, make sure they are competent

Validation

• This is why we compute hashes
• Must verify that the copies from which you

derived your conclusions are identical to
the best evidence
– Obtain hashes on the best evidence at the

earliest opportunity
– Time stamp your hashes

Chain Of Custody

• Basically a paper trail documenting
positive control of a piece of best evidence
from the time of collection to its
introduction in court
– Designed to

• Prevent access by unauthorized personnel
• Prevent tampering

Evidence Handling Process
• Covered in the book Ch 6
• Summary

– Photograph the scene
– Document everything

• Arrangement of components
• Component manufacturer, model#, serial#

– Label media as it is collected (case/item#)
– Create an evidence tag for each individual item
– Create backups and working copies of digital media
– Transfer best evidence to evidence custodian

Evidence Tags

• Example in the book pg 167-169
• Contain

– Who/how/when collected
– Case number, item number
– Description
– Room for chain of custody

• Details exactly who has handled the evidence and
when

Evidence Custodian
• The person/people responsible for the storage of

evidence
– Should be the only people with access to the

evidence storage area
• Secure room or safe

• Must properly document all access to best
evidence
– Evidence log

• Responsible for periodic inventories of all
evidence

CS4677 Computer Forensics
File Systems

Chris Eagle
Spring '06

Reference

• Hard Drive basics
– http://www.pcguide.com/ref/hdd/index.htm

Data Hierarchy

• Similar to the OSI network stack, data on a hard
drive is layered to provide different levels of
abstraction
– Physical sectors
– Partitions
– Allocation units (blocks)
– Space management layer (layout)
– File layer (data)
– Application layer (meaning)

Physical Layer
• Raw sectors on a disk

– Created by the "low-level" formatting process
– Generally 512 bytes

• Two addressing schemes
– Cylinder/Head/Sector (CHS)

• Must specify 3 parameters
• Requires some knowledge of drive geometry

– Logical Block Addressing (LBA)
• Specify one number (0..MAX_SECTOR)
• Drive geometry hidden by BIOS

Partitions

• Book calls this "data classification layer"
• Group consecutive sectors into units called

partitions
– Partition table keeps track of where and how large
– Partition table resides at the end of the boot sector
– Each partition has a partition-type ID

• http://www.win.tue.nl/~aeb/partitions/partition_types-1.html
• fdisk's l command

Partition Types
Command (m for help): l

0 Empty 1c Hidden Win95 FA 70 DiskSecure Mult bb Boot Wizard hid
1 FAT12 1e Hidden Win95 FA 75 PC/IX be Solaris boot
2 XENIX root 24 NEC DOS 80 Old Minix c1 DRDOS/sec (FAT-
3 XENIX usr 39 Plan 9 81 Minix / old Lin c4 DRDOS/sec (FAT-
4 FAT16 <32M 3c PartitionMagic 82 Linux swap c6 DRDOS/sec (FAT-
5 Extended 40 Venix 80286 83 Linux c7 Syrinx
6 FAT16 41 PPC PReP Boot 84 OS/2 hidden C: da Non-FS data
7 HPFS/NTFS 42 SFS 85 Linux extended db CP/M / CTOS / .
8 AIX 4d QNX4.x 86 NTFS volume set de Dell Utility
9 AIX bootable 4e QNX4.x 2nd part 87 NTFS volume set df BootIt
a OS/2 Boot Manag 4f QNX4.x 3rd part 8e Linux LVM e1 DOS access
b Win95 FAT32 50 OnTrack DM 93 Amoeba e3 DOS R/O
c Win95 FAT32 (LB 51 OnTrack DM6 Aux 94 Amoeba BBT e4 SpeedStor
e Win95 FAT16 (LB 52 CP/M 9f BSD/OS eb BeOS fs
f Win95 Ext'd (LB 53 OnTrack DM6 Aux a0 IBM Thinkpad hi ee EFI GPT

10 OPUS 54 OnTrackDM6 a5 FreeBSD ef EFI (FAT-12/16/
11 Hidden FAT12 55 EZ-Drive a6 OpenBSD f0 Linux/PA-RISC b
12 Compaq diagnost 56 Golden Bow a7 NeXTSTEP f1 SpeedStor
14 Hidden FAT16 <3 5c Priam Edisk a8 Darwin UFS f4 SpeedStor
16 Hidden FAT16 61 SpeedStor a9 NetBSD f2 DOS secondary
17 Hidden HPFS/NTF 63 GNU HURD or Sys ab Darwin boot fd Linux raid auto
18 AST SmartSleep 64 Novell Netware b7 BSDI fs fe LANstep
1b Hidden Win95 FA 65 Novell Netware b8 BSDI swap ff BBT

Partition Table

Command (m for help): p

Disk /dev/hda: 80.0 GB, 80026361856 bytes
255 heads, 63 sectors/track, 9729 cylinders, total 156301488 sectors
Units = sectors of 1 * 512 = 512 bytes

Device Boot Start End Blocks Id System
/dev/hda1 * 63 208844 104391 83 Linux
/dev/hda2 208845 101868164 50829660 83 Linux
/dev/hda3 101868165 105948674 2040255 82 Linux swap
/dev/hda4 105948675 156296384 25173855 f Win95 Ext'd (LBA)
/dev/hda5 105948738 153163709 23607486 83 Linux
/dev/hda6 153163773 154207934 522081 83 Linux
/dev/hda7 154207998 156296384 1044193+ 83 Linux

Allocation Layer

• This is where the O/S starts getting
involved

• An allocation unit is the minimum unit the
O/S can allocate
– Windows – clusters
– Unix – blocks

• One or more sectors
• Depends on partition size

Allocation Layer (ii)

• O/S evaluates trade offs
– Large number of small units

• Higher overhead
• Less wasted space (slack space)
• More disk i/o operations required

– Smaller number of large units
• Less overhead
• More wasted space (slack)
• Fewer i/o operations

Storage Space Management

• Free Space Tracking
• Allocation units are either free or in-use
• Status tracked differently by different O/S

– DOS/Win95
• File Allocation Table (FAT)

– NTFS
• Master File Table (MFT)

– Unix
• Superblock

File System Layer

• O/S provides two services
– Files

• Contain application layer data
– Directories

• Assignment of names to files
– Maps a file's name to its location in a partition

• Logical grouping of files

File System Structure (cont)

• File Indexing
– Unix: Index Nodes (inode)

• File names are held in directories which do nothing
more than map a name to an inode

– Windows
• MFT

– Small files (~1500 bytes) held entirely within the MFT
– Large files use btree style allocation

Application Layer

• The O/S could care less what is in a file
• Applications assign meaning to file content
• This has nothing to do with the name of

the file
– A file name is simply a hint as to its contents

File System Abstraction
• Data Layer

– Lowest layer, sectors on a disk
– Most disks are block devices so we get a minimum of a sector at

a time
• File System Layer

– Meta data used to index sectors into groups we call files
– Translates from application layer “file view” to data layer

track/sector view
• Application Layer

– Each application has its own expectations for individual files
– To be useful to an application, a file’s content must conform to

the application’s format requirements

File System Hierarchy

Application

File System

Data

open(“notes.ppt”)

Read track 25,
sectors 4-15

File Creation

• Unix
– A free inode is obtained from the superblock
– File attributes are filled into the inode
– Free blocks are requested from the superblock
– Each block is recorded in the inode in the order in

which it is obtained/used
• Blocks need not be contiguous

• Windows is similar with interaction through the
MFT

File Attributes

• Permissions
• MAC times
• Number of links
• Size
• Owner
• All stored in the file’s index structure

– Unix: inode
– Windows: MFT

Unix inodes

• Inodes are a fixed size
– Contain attribute data mentioned previously
– Contain 15 pointers

• 12 “direct” pointers to data blocks
• 1 “single indirect” pointer

– A pointer to a block of BLOCK_SIZE/4 direct pointers
• 1 “double indirect” pointer

– A pointer to a block of BLOCK_SIZE/4 single indirect pointers
• 1 “triple indirect” pointer

– A pointer to a block of BLOCK_SIZE/4 double indirect pointers

Linux inode

12 direct
block pointers

BLOCK_SIZE
data blocks

debugfs

• A low level tool for poking around a file
system

• Operates in interactive mode or batch
mode

• Can display inode contents
• Can list deleted inodes
• Can display disk block contents
• Can dump blocks to new files

debugfs output
debugfs -R show_super_stats /dev/hda6 | grep Block
debugfs 1.18, 11-Nov-1999 for EXT2 FS 0.5b, 95/08/09
Block size = 4096, fragment size = 4096

debugfs -R "stat <340384>" /dev/hda6
debugfs 1.18, 11-Nov-1999 for EXT2 FS 0.5b, 95/08/09
Inode: 340384 Type: regular Mode: 0664 Flags: 0x0

Version/Generation: -1602593972
User: 0 Group: 0 Size: 17312
File ACL: 0 Directory ACL: 0
Links: 1 Blockcount: 40
Fragment: Address: 0 Number: 0 Size: 0
ctime: 0x3e53cb37 -- Wed Feb 19 10:21:43 2003
atime: 0x3e53e31e -- Wed Feb 19 12:03:42 2003
mtime: 0x3e53cb37 -- Wed Feb 19 10:21:43 2003
BLOCKS:
690519 690520 690521 690522 690523
TOTAL: 5

of 512 byte blocks

File size

Disk blocks used for this file

Unix inodes (cont)
• What is BLOCK_SIZE?

– The minimum amount of space allocated to a file
debugfs –R show_super_stats dev | grep Block

• Small file (<= 12 * BLOCK_SIZE) will require only
the direct pointers contained within an inode
– Easy to recover

• Larger files will use first the single indirect
pointer and then the double followed by the triple
– More difficult to recover as you increase the levels of

indirection

More debugfs

• Understanding block allocation
debugfs -R show_super_stats /dev/hda6 | grep Block
debugfs 1.18, 11-Nov-1999 for EXT2 FS 0.5b, 95/08/09
Block size = 4096, fragment size = 4096

ls -il tct-1.11.tar.gz
340387 -rw-r--r-- 1 root root 314429 Feb 19 10:26 tct-1.11.tar.gz

debugfs -R "stat <340387>" /dev/hda6 | grep TOTAL
debugfs 1.18, 11-Nov-1999 for EXT2 FS 0.5b, 95/08/09
TOTAL: 78
• Why does the file use 78 blocks instead of

– 314429 / 4096 = 77 blocks?
• One block is dedicated to the single indirect block

Block Layout

• In an ideal world files remain
unfragmented
– All blocks allocated contiguously

• Indirect blocks are mixed with data
blocks
– Makes grabbing consecutive blocks to

recreate the file a bit difficult
– Must skip indirect blocks when grabbing

blocks to recreate file
– Need to know the structure of the file if

possible

Unfragmented Files
• In this case files are laid out as follows

– Let N = BLOCK_SIZE / 4
– 12 data blocks
– 1 indirect pointer block w/ N pointers
– N indirect data blocks
– 1 double indirect pointer block w/ N pointers

• 1 indirect pointer block w/ N pointers
• N double indirect data blocks
• Repeat (N – 1) more times

– 1 triple indirect pointer block w/ N pointers
• 1 double indirect pointer block w/ N pointers

– 1 indirect pointer block w/ N pointers
– N triple indirect data blocks
– Repeat (N – 1) more times

• Repeat (N – 1) more times

Indirect Pointer Block
dd if=/dev/urandom bs=4096 count=77 of=medium_file
77+0 records in
77+0 records out
ls -il medium_file
5112112 -rw-r--r-- 1 root root 315392 Oct 25 21:27 medium_file
debugfs -R "stat <5112112>" /dev/hda1
debugfs 1.38 (30-Jun-2005)
Inode: 5112112 Type: regular Mode: 0644 Flags: 0x0 Generation: 3581729
933
User: 0 Group: 0 Size: 315392
File ACL: 0 Directory ACL: 0
Links: 1 Blockcount: 624
Fragment: Address: 0 Number: 0 Size: 0
ctime: 0x435f0596 -- Tue Oct 25 21:27:02 2005
atime: 0x435f0596 -- Tue Oct 25 21:27:02 2005
mtime: 0x435f0596 -- Tue Oct 25 21:27:02 2005
BLOCKS:
(0):10240376, (1-5):10240401-10240405, (6-11):10243492-10243497, (IND):10243498,
(12-76):10243499-10243563

TOTAL: 78

dd if=/dev/hda1 bs=4096 skip=10243498 count=1 | od -A x -t d4
1+0 records in
1+0 records out
000000 10243499 10243500 10243501 10243502
000010 10243503 10243504 10243505 10243506
000020 10243507 10243508 10243509 10243510
000030 10243511 10243512 10243513 10243514
000040 10243515 10243516 10243517 10243518
000050 10243519 10243520 10243521 10243522
000060 10243523 10243524 10243525 10243526
000070 10243527 10243528 10243529 10243530
000080 10243531 10243532 10243533 10243534
000090 10243535 10243536 10243537 10243538
0000a0 10243539 10243540 10243541 10243542
0000b0 10243543 10243544 10243545 10243546
0000c0 10243547 10243548 10243549 10243550
0000d0 10243551 10243552 10243553 10243554
0000e0 10243555 10243556 10243557 10243558
0000f0 10243559 10243560 10243561 10243562
000100 10243563 0 0 0
000110 0 0 0 0
*
001000

File Deletion

• The link count held within the inode is
decremented

• IF the link count becomes zero
– Each block listed in the file’s inode is returned to the

superblock for inclusion in the free block list
– The inode itself is returned to the superblock’s list of

free inodes
• Neither the inode nor the blocks are overwritten!

debugfs again

• Can be used to recover deleted files (may
not work on ext3 file systems)
– lsdel command lists deleted inodes
– cat command list file content associated with

particular inode
– dump command allows you to dump content

to a new file
– dumping a deleted inode will recover the

deleted file

File Recovery

• Browse the list of free inodes for ones that
contained data
– On Linux these may have a dtime

• Browse the inode’s list of blocks to see if
they remain free
– No guarantee that they still contain original

data
– A block may have been freed several times

CS4677 Computer Forensics
Mounting Forensics Images

Chris Eagle
Spring '06

Imaging
• Partition

– Usually done by software only
– Use dd to create forensics duplicate
– Name the partition to read and the file to save the

image to
dd if=/dev/hdb1 of=hdb1.img conv=noerror,sync

• Drive
– Done with either hardware or software
– Use dd to create forensics duplicate
– Name the drive to read and the file to save the image

to
dd if=/dev/hdb of=hdb.img conv=noerror,sync

Evidence Protection

• Mounting an evidence file will change the
file regardless of whether the file is not
writeable or the file is mounted read only.

• For image files, set the immutable bit on
the file using chattr
chattr +i <image file>

– Prevents inadvertent changes to image
– May not be able to mount

Loopback Device

• Linux capability
• Allows binary images of a file system to be

mounted just like a physical device/partition
• Perfect for mounting forensics images for

analysis
• Name: /dev/loopN
• mount command can do all the work for us

– Occasionally fails for no apparent reason
– Use losetup for finer control

Mounting a Partition Image

• Images of partitions contain entire file systems
(ext2, ntfs, fat, …)

• Conveniently, the mount command can only
mount file systems

• Using mount to mount an image
mount –o ro,loop,noexec,noatime hdb1.img /mnt/evidence

– ro: read only
– loop: use next available loopback device
– noexec: don't allow execution of any binaries in the

file system
– noatime: don't atimes of any files in the file system

Using losetup

• Sometimes mount chokes with the loop option
• Use losetup instead

– losetup /dev/loop0 hdb1.img

• Associated loopback device zero with the image file
hdb1.img

– mount –o ro,noexec,noatime /dev/loop0 /mnt/evidence

• Mounts the "device" /dev/loop0
– When complete

• umount /dev/loop0
– Unmount the device

• losetup –d /dev/loop0
– Detach /dev/loop0 from hdb1.img

Drive Images
• Can’t mount a drive, only partitions
• Three options

– Strip out partitions using dd
• Described here:

– http://sleuthkit.sourceforge.net/informer/sleuthkit-informer-
2.html#split

– Use the offset parameter to losetup
• Drawback is that you can't recognize the end of the

partition
– Use NASA loopback drivers

• These allow you to mount a drive image
• ftp://ftp.hq.nasa.gov/pub/ig/ccd/enhanced_loopback/

– You are downloading an actual kernel, not just a driver

Extracting Partition Images

• Basic idea
– Use fdisk on the image to read the partition

table
– With information from fdisk, use dd to extract

the portions of the file corresponding to each
partition

Using fdisk
[root@eaglepc cs4677]# fdisk -lu /dev/hda

Disk /dev/hda: 13.0 GB, 13022324736 bytes

255 heads, 63 sectors/track, 1583 cylinders, total 25434228 sectors
Units = sectors of 1 * 512 = 512 bytes

Device Boot Start End Blocks Id System
/dev/hda1 * 63 48194 24066 83 Linux

/dev/hda2 48195 24900749 12426277+ 83 Linux
/dev/hda3 24900750 25430894 265072+ 82 Linux swap

• -u option causes display to be in units of sectors

fdisk on an Image File
[root@eaglepc cs4677]# fdisk -lu hda.img
You must set cylinders.
You can do this from the extra functions menu.

Disk hda.img: 0 MB, 0 bytes
255 heads, 63 sectors/track, 0 cylinders, total 0 sectors
Units = sectors of 1 * 512 = 512 bytes

Device Boot Start End Blocks Id System
hda.img1 * 63 48194 24066 83 Linux
hda.img2 48195 24900749 12426277+ 83 Linux
Partition 2 has different physical/logical endings:

phys=(1023, 254, 63) logical=(1549, 254, 63)
hda.img3 24900750 25430894 265072+ 82 Linux swap
Partition 3 has different physical/logical beginnings (non-Linux?):

phys=(1023, 254, 63) logical=(1550, 0, 1)
Partition 3 has different physical/logical endings:

phys=(1023, 254, 63) logical=(1582, 254, 63)

• Because fdisk does not know the geometry

Educating fdisk
• Tell fdisk about the drive geometry

[root@eaglepc cs4677]# fdisk -lu -C 1583 -S 63 -H 255 hda.img

Disk hda.img: 0 MB, 0 bytes

255 heads, 63 sectors/track, 1583 cylinders, total 0 sectors
Units = sectors of 1 * 512 = 512 bytes

Device Boot Start End Blocks Id System
hda.img1 * 63 48194 24066 83 Linux
hda.img2 48195 24900749 12426277+ 83 Linux

hda.img3 24900750 25430894 265072+ 82 Linux swap

Extracting a Partition

• With the information from fdisk, you can
use dd to extract a portion of a file
– skip into the file to start at the first sector of

the partition
– count only as many sectors as you need
– bs set to sector size

• Example – grabbing /dev/hda1
dd if=hda.img of=hda1.img skip=63 count=48132 bs=512

Using losetup

• losetup can be told to offset into a file to
find the start of your data
– -o option specifies number of bytes to offset

• Previous example
– Partition 1 begins at sector 63 = 32256 bytes
– losetup –o 32256 /dev/loop0 hda.img
– mount –o ro,noexec /dev/loop0 /mnt/evidence

• Problem is that end of partition is not
recognized

